1、第一章 分子动理论——1.分子动理论的基本内容
2、第一章 分子动理论——2.实验:用油膜法估测油酸分子的大小
3、第一章 分子动理论——3.分子运动速率分布规律
4、第一章 分子动理论——4.分子动能和分子势能
5、第二章 气体、固体和液体——1.温度和温标
6、第二章 气体、固体和液体——2.气体的等温变化
7、第二章 气体、固体和液体——3.气体的等压变化和等容变化
8、第二章 气体、固体和液体——4.固体
9、第二章 气体、固体和液体——5.液体
10、第三章 热力学定律——1.功、热和内能的改变
11、第三章 热力学定律——2.热力学第一定律
12、第三章 热力学定律——3.能量守恒定律
13、第三章 热力学定律——4.热力学第二定律
14、第四章 原子结构和波粒二象性——1.普朗克黑体辐射理论
15、第四章 原子结构和波粒二象性——2.光电效应
16、第四章 原子结构和波粒二象性——3.原子的核式结构模型
17、第四章 原子结构和波粒二象性——4.氢原子光谱和玻尔的原子模型
18、第四章 原子结构和波粒二象性——5.粒子的波动性和量子力学的建立
19、第五章 原子核——1.原子的组成
20、第五章 原子核——2.放射性元素的衰变
21、第五章 原子核——3.核力与结合能
22、第五章 原子核——4.核裂变与核聚变
23、第五章 原子核——5.“基本”粒子
第一章 分子动理论——1.分子动理论的基本内容
问题:如果我们把地球的大小与一个苹果的大小相比那就相当于将直径为1cm的球分与分子相比。可见,分子是极其微小的。我们曾经研究过物体的运动,那么,构成物体的微小分子会怎样运动呢?
一、物体是由大量分子组成的
我们在初中已经学过,物体是由大量分子组成的。需碳原子要指出的是:在研究物质的化学性质时,我们认为组成物质的微粒是分子、原子或者离子。但是,在研究物体的热运动性质和规律时,不必区分它们在化学变化中所起的不同作用,而把组成物体的微粒统称为分子。
我们知道,1mol水中含有水分子的数量就达6.02×10²³个。这足以表明,组成物体的分子是大量的。人们用肉眼无法直接看到分子,就是用高倍的光学显微镜也看不到。直至1982年,人们研制了能放大几亿倍的扫描隧道显微镜,才观察到物质表面原子的排列。
二、分子热运动
扩散 从许多实验和生活现象中我们都会发现,不同种物质能够彼此进入对方。在物理学中,人们把这类现象叫作扩散( diffusion)。扩散现象并不是外界作用(例如对流、重力作用等)引起的,也不是化学反应的结果,而是由物质分子的无规则运动产生的。例如,酱油里的色素分子扩散到了鸡蛋清内。扩散现象是物质分子永不停息地做无规则运动的证据之一。
扩散现象在科学技术中有很多应用。例如,在生产半导体器件时,需要在纯净半导体材料中掺人其他元素。这一过程可以在高温条件下通过分子的扩散来完成。
布朗运动 19世纪初,一些人观察到,悬浮在液体中的小颗粒总在不停地运动。1827年,英国植物学家布朗首先在显微镜下研究了这种运动。下面我们做一个类似的实验。
演示:用显微镜观察炭粒的运动
取1滴用水稀释的碳素墨汁,滴在载玻片上,盖上盖玻片,放在高倍显微镜下观察小炭粒的运动情况。调节显徼镜的放大倍数,如调节至400倍或1000倍,观察悬浊液中小炭粒的运动情况。目镜中观察的结果可以通过显示器呈现出来。
改变悬浊液的温度。重复上述操作,观察悬浊液中小炭粒的运动情况。
从实验结果可以看出,小炭粒的运动是无规则的,温度越高,小炭粒的运动越明显。
如果在显微镜下追踪一颗小炭粒的运动,每隔30s把炭粒的位置记录下来,然后用线段把这些位置按时间顺序依次连接起来,便可以得到一条某一颗微粒运动的位置连线。这表明微粒的运动是无规则的。实际上,就是在30s内,微粒的运动也是极不规则的。
当时布朗观察的是悬浮在水中的花粉微粒。他起初认为,微粒的运动不是外界因素引起的,而是其自发的运动。是不是因为植物有生命才产生了这样的运动?布朗用当时保存了上百年的植物标本,取其微粒进行实验,他还用了一些没有生命的无机物粉末进行实验。结果是,不管哪一种微粒,只要足够小,就会发生这种运动;微粒越小,运动就越明显。这说明微粒的运动不是生命现象。后人把悬浮微粒的这种无规则运动叫作布朗运动( Brownian motion)。
在显微镜下看起来连成一片的液体,实际上是由许许多多分子组成的,液体分子不停地做无规则运动,不断地撞击微粒。在某一瞬间,微粒在某个方向受到的撞击作用较强;在下一瞬间,微粒受到另一方向的撞击作用较强,这样就引起了微粒无规则的运动。
悬浮在液体中的微粒越小,在某一瞬间跟它相撞的液体分子数越少,撞击作用的不平衡性就表现得越明显,并且微粒越小,它的质量越小,其运动状态越容易被改变,因而,布朗运动越明显。如果悬浮在液体中的微粒很大,在某一瞬间跟它相撞的分子数很多,各个方向的撞击作用接近平衡,这时就很难观察到布朗运动了。(*分子的无规则运动无法直接观察。悬浮微粒的无规则运动并不是分子的运动,但这一现象可以间接地反映液体分子运动的无规则性。)
热运动 在扩散现象中,温度越高,扩散得越快。观察布朗运动,温度越高,悬浮微粒的运动就越明显。可见,分子的无规则运动与温度有关系,温度越高,这种运动越剧烈。因此,我们把分子这种永不停息的无规则运动叫作热运动( thermal motion)。温度是分子热运动剧烈程度的标志。
三、分子间的作用力
气体很容易被压缩,说明气体分子之间存在着很大的空隙。固体或液体不容易被压缩,那么,分子之间还会有空隙吗?
水和酒精混合后的总体积变小了。这表明液体分子间存在着空隙。再如,压在一起的金块和铅块,各自的分子能扩散到对方的内部,这表明固体分子之间也存在着空隙。分子间有空隙,大量分子却能聚集在一起,这说明分子之间存在着相互作用力。
当用力拉伸物体时,物体内各部分之间要产生反抗拉伸的作用力,此时分子间的作用力表现为引力。
当用力压缩物体时,物体各部分之问会产生反抗压缩的作用力,此时分子间的作用力表现为斥力。
分子之间的引力或斥力都跟分子间距离有关,那么,它们之间有怎样的关系呢?
研究表明,分子间的作用力F跟分子间距离r的关系是:
当r
当r>r0时,分子间的作用力F表现为引力。
那么,分子间为什么有相互作用力呢?
我们知道,分子是由原子组成的。原子内部有带正电的原子核和带负电的电子。分子间的作用力就是由这些带电粒子的相互作用引起的。
三、分子动理论
我们已经知道:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着相互作用力。这就是分子动理论的基本内容。
在热学研究中常常以这样的基本内容为出发点,把物质的热学性质和规律看作微观粒子热运动的宏观表现。这样建立的理论叫作分子动理论( molecular kinetic theory)。
由于分子热运动是无规则的,所以,对于任何一个分子而言,在每一时刻沿什么方向运动,以及运动的速率等都具有偶然性;但是对于大量分子的整体而言,它们的运动却表现出规律性。在本章第3节我们将研究分子运动速率的分布规律。